BOARD QUESTION PAPER: MARCH 2024

Mathematics Part - II

Time: 2 Hours Max. Marks: 40

Note:

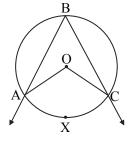
- *All* questions are compulsory. i.
- Use of a calculator is not allowed. ii.
- iii. The numbers to the right of the questions indicate full marks.
- In case of MCQs [Q. No. 1(A)] only the first attempt will be evaluated and will be given credit. iv.
- V. Draw proper figures wherever necessary.
- The marks of construction should be clear. Do not erase them. vi.
- vii. Diagram is essential for writing the proof of the theorem.

Q.1. (A) Four alternative answers for each of the following sub-questions are given. Choose the alternative and write its alphabet:

- Out of the dates given below which date constitutes a Pythagorean triplet? 1.
 - (A) 15/8/17
- (B) 16/8/16
- 3/5/17
- (D) 4/9/15

- $\sin \theta \times \csc \theta = ?$ 2.
 - (A) 1

- $\sqrt{2}$


- Slope of X-axis is (B) 3.
- (C) 0
- Cannot be determined
- 4. A circle having radius 3 cm, then the length of its largest chord is (A) 1.5 cm (B) 3 cm (C) 6 cm
- **(B) Solve the following sub-questions:**

[4]

[4]

- If $\triangle ABC \sim \triangle PQR$ and AB : PQ = 2 : 3, then find the value of $\frac{A(\triangle ABC)}{A(\triangle PQR)}$ 1.
- 2. Two circles of radii 5 cm and 3 cm touch each other externally. Find the distance between their centres.
- Find the side of a square whose diagonal is $10\sqrt{2}$ cm. 3.
- 4. Angle made by the line with the positive direction of X-axis is 45°. Find the slope of that line.
- Complete any two activities and rewrite it: Q.2. (A)

[4]

In the above figure, $\angle ABC$ is inscribed in arc ABC.

If $\angle ABC = 60^{\circ}$, find m $\angle AOC$.

Solution:

$$\angle ABC = \frac{1}{2} \text{ m(arc AXC)}$$

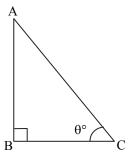
$$60^{\circ} = \frac{1}{2} \text{ m(arc AXC)}$$

$$=$$
 m(arc AXC)

Mathematics Part - II

But $m\angle AOC = | m(arc.....)$

...[Property of central angle]


Find the value of $\sin^2\theta + \cos^2\theta$. 2.

Solution:

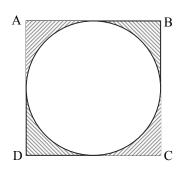
In \triangle ABC, \angle ABC = 90°, \angle C = 0°.

$$AB^2 + BC^2 = \boxed{}$$

...[Pythagoras theorem]

Divide both sides by AC²

$$\frac{AB^2}{AC^2} + \frac{BC^2}{AC^2} = \frac{AC^2}{AC^2}$$


$$\therefore \qquad \left(\frac{AB}{AC}\right)^2 + \left(\frac{BC}{AC}\right)^2 = 1$$

But
$$\frac{AB}{AC} = \Box$$
 and $\frac{BC}{AC} = \Box$

$$\therefore \quad \sin^2\theta + \cos^2\theta = \boxed{}$$

3.

In the figure given above, ABCD is a square and a circle in inscribed in it. All sides of a square touch the circle.

If AB = 14 cm, find the area of shaded region.

Solution:

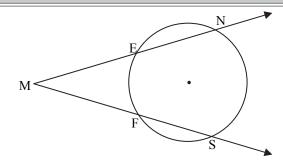
Area of square =
$$\left(\begin{array}{c} \end{array}\right)^2$$
 ...[Formula]
= 14^2
= $\left[\begin{array}{c} \end{array}\right]$ cm²

Area of circle =
$$\dots$$
 [Formula]
= $\frac{22}{7} \times 7 \times 7$

Area of shaded portion = Area of square – Area of circle
=
$$196 - 154$$

= $\boxed{\text{cm}^2}$

GROUP TUITIONS


[8]

Solve any *four* of the following sub-questions: **(B)**

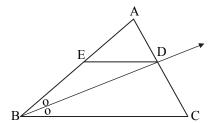
 $= 154 \text{ cm}^2$

- Radius of a sector of a circle is 3.5 cm and length of its arc is 2.2 cm. Find the area of the
- 2. Find the length of the hypotenuse of a right-angled triangle if remaining sides are 9 cm and 12 cm.

3.

Since-1989

S BABU SIRS


GROUP TUITIONS

In the above figure, m(arc NS) = 125° , m(arc EF) = 37° . Find the measure of \angle NMS.

- 4. Find the slope of the line passing through the points A(2, 3), B(4, 7).
- 5. Find the surface area of a sphere of radius 7 cm.

Q.3. (A) Complete any one activity of the following and rewrite it:

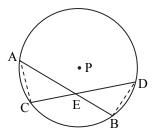
[3]

In $\triangle ABC$, ray BD bisects $\angle ABC$, A-D-C, seg DE \parallel side BC, A-E-B, then for showing $\frac{AB}{BC} = \frac{AE}{EB}$, complete the following activity:

Proof:

In ΔABC, ray BD bisects ∠B

$$\therefore \qquad \frac{\Box}{BC} = \frac{AD}{DC}$$


In $\triangle ABC$, DE \parallel BC

$$\frac{\Box}{\Box} = \frac{AD}{DC}$$

$$\frac{AB}{\Box} = \frac{\Box}{EB}$$

$$\dots$$
[From (I) and (II)]

2.

Given: Chords AB and CD of a circle with centre P intersect at point E.

To prove: $AE \times EB = CE \times ED$

Construction: Draw seg AC and seg BD. Fill in the blank and complete the proof.

Proof:

In ΔCAE and ΔBDE .

$$\angle AEC \cong \angle DEB$$

 $\cong \angle BDE$ (angles inscribed in the same arc)

Mathematics Part - II

 $\therefore \quad \Delta CAE \sim \Delta BDE$

Since-1989

 \therefore AE × EB = CE × ED.

GROUP TUITIONS

(B) Solve any two of the following sub-questions:

[6]

- 1. Determine whether the points are collinear. A(1, -3), B(2, -5), C(-4, 7)
- 2. $\triangle ABC \sim \triangle LMN$. In $\triangle ABC$, AB = 5.5 cm, BC = 6 cm, CA = 4.5 cm. Construct $\triangle ABC$ and $\triangle LMN$ such that $\frac{BC}{MN} = \frac{5}{4}$.
- 3. Seg PM is a median of $\triangle PQR$, PM = 9 and $PQ^2 + PR^2 = 290$, then find QR.
- 4. Prove that, 'If a line parallel to a side of a triangle intersects the remaining sides in two distinct points, then the line divides the side in the same proportion.'

Q.4. Solve any *two* of the following sub-questions:

[8]

- 1. $\frac{1}{\sin^2 \theta} \frac{1}{\cos^2 \theta} \frac{1}{\tan^2 \theta} \frac{1}{\cot^2 \theta} \frac{1}{\sec^2 \theta} \frac{1}{\cos e^2 \theta} = -3$, then find the value of θ .
- 2. A cylinder of radius 12 cm contains water up to the height 20 cm. A spherical iron ball is dropped into the cylinder and thus water level raised by 6.75 cm. What is the radius of iron ball?
- 3. Draw a circle with centre O having radius 3 cm. Draw tangent segments PA and PB through the point P outside the circle such that $\angle APB = 70^{\circ}$.

Q.5. Solve any *one* of the following sub-questions:

[3]

1. ABCD is trapezium, AB || CD diagonals of trapezium intersects in point P.

Write the answers of the following questions:

- a. Draw the figure using given information.
- b. Write any one pair of alternate angles and opposite angles.
- c. Write the names of similar triangles with test of similarity.
- 2. AB is a chord of a circle with centre O. AOC is diameter of circle, AT is a tangent at A. Write answers of the following questions:
 - a. Draw the figure using given information.
 - b. Find the measures of \angle CAT and \angle ABC with reasons.
 - c. Whether ∠CAT and ∠ABC are congruent? Justify your answer.

